Spatial Variation in the Storages and Age-Related Dynamics of Forest Carbon Sequestration in Different Climate Zones—Evidence from Black Locust Plantations on the Loess Plateau of China
نویسندگان
چکیده
Knowledge about the long-term influences of climate change on the amount of potential carbon (C) sequestration in forest ecosystems, including age-related dynamics, remains unclear. This study used two similar age-sequences of black locust forests (Robinia pseudoacacia L.) in the semi-arid and semi-humid zones of China's Loess Plateau to assess the variation in C stocks and age-related dynamics. Our results demonstrated that black locust forests of the semi-humid zone stored significantly more C than did forests in the semi-arid zone, across the chronosequence (p < 0.001). The C carrying capacity of the plantations was measured at 166.4 Mg C ha-1 (1 Mg = 106 g) in the semi-humid zone, while the semi-arid zone had a capacity of only 79.4 Mg C ha-1. Soil organic C (SOC) increased continuously with stand age in the semi-arid zone (R2 = 0.84, p = 0.010). However, in the semi-humid zone, SOC declined sharply by 47.8% after the initial stage (5 to 10 y). The C stock in trees increased continuously with stand age in the semi-humid zone (R2 = 0.83, p = 0.011), yet in the semi-arid zone, it decreased dramatically from 43.0 Mg C ha-1 to 28.4 Mg C ha-1 during the old forest stage (38 to 56 y). The shift from being a net C sink to a net C source occurred at the initial stage in the semi-humid zone versus at the old forest stage in the semi-arid zone after reforestation. Surprisingly, with the exception of the initial and later stages (55 y), the patterns of C allocation among trees, soils, understory and litter were not statistically different between the two climate zones. Our results suggest that climate factors can alter the potential amount and age-related dynamics of forest C sequestration.
منابع مشابه
Carbon sequestration of mature black locust stands on the Loess Plateau, China
In Northwestern China, the carbon fixing capacity of black locust (Robinia pseudoacacia) has been questioned because of its slow growth following the return of unproductive farmland to forest. To explore the effects of stand age on the carbon sequestration potential of R. pseudoacacia in a semi-arid, ecologically fragile area, parameters related to carbon fixation were investigated in plots of ...
متن کاملSoil organic carbon dynamics of black locust plantations in the middle Loess Plateau area of China
Soil organic carbon (SOC) is the largest terrestrial carbon pool and sensitive to land use and cover change; its dynamics are critical for carbon cycling in terrestrial ecosystems and the atmosphere. In this study, we combined a modeling approach and field measurements to examine the temporal dynamics of SOC following afforestation (Robinia pseudoacacia) of former arable land at six sites under...
متن کاملComparison of Carbon and Nitrogen Sequestration in Soils Under Plantations, Natural Forest and Agricultural Farm Land Uses in Arjan Plain in the Fars Province
The carbon sequestaration by plants and soil is one of the easiest and the most econimical ways to reduce atmosphere carbon. This study was conducted on the planted land use of Fraxinus rotundifolia, Cupressus arizonica, obinia pseudoacacia L., Elaeagnus angustifolia, Cedrus libani, and Quercus brantii (persica) in the Arjan plain of Fars province. For each plantation land use, there were three...
متن کامل“Grain for Green” driven land use change and carbon sequestration on the Loess Plateau, China
Land-use change is widely considered to be a major factor affecting soil carbon (C) sequestration (ΔCs). This paper studied changes to soil C stocks (Cs) following the conversion of farmland to forest, shrub and grassland across the key area for implementing China's "Grain for Green"--the Loess Plateau. The results are based on a synthesis of 44 recent publications (including 424 observations a...
متن کاملClimate change would enlarge suitable planting areas of sugarcanes in China
China’s sugar production and consumption continues to increase. This process is alreadyongoing for over 15 years and over 90% of the sugar production comes from sugarcane(Saccharum officinarum). Most of the sugarcane is planted in the south (e.g. the Chineseprovinces of Yunnan, Guangxi, Guangdong and Hainan) and it represents there a majoreconomic crop in these landscapes. As found virtually wo...
متن کامل